
A blog post on

Visualising the loss landscape

Sujal Vijayaraghavan

Sunday, 26 September 2021

“You can’t step past [someone] in this [two] dimension. Observe this two-dimensional egg.
If we were in the third dimension, looking down, we’d be able to see an unhatched chick in
it, just as a chick inside a three-dimensional egg could be seen by an observer in the fourth
dimension”

- Prof. Farnsworth
E15S7 Futurama

1 Prologue

When plotting and monitoring an architecture’s loss function, we are looking at the loss land-
scape through a toilet paper tube. On the y-axis is the loss function and on the x the epochs.
We have only a one-dimensional view of the loss function’s space, and that, too, for a small range
of gradients of the parameters.

What if we could see, say, the 175bn-dimensional loss space for GPT 1 on a range of gradients of
those billions of parameters? Well, let’s not kid ourselves. What if we could at least see the loss
space in a reduced dimensional space, say, two? This introductory article briefly demonstrates
how it is achieved, and how simple yet fascinating an idea it is.

While training neural nets, the loss function we plot is a function of the model architecture, the
optimisation method, initialisation, etc. The resulting loss function plotted varies differently for
different configurations of them. Yet, the effect of these choices on the resulting objective is un-
clear. Wevisualise loss function convergenceasmuch for funas togain insights into the training.
Visu-alisationof landscapesoffers richer insightsandhelpsexplainwhyneural netscanoptimise
evenextremely complexnon-convex functionsandwhy theminimumoptimisedgeneraliseswell.
(For example, one useful insight into skip connexionswas observedwith such visualisation: they
prevent the model from turning the loss landscape chaotic and are hence useful in training6).

Note
• This piece was originally written onMedium

• For simplicity and brevity, this article works around the MNIST dataset and explores several aspects
of visualisation. More scholastic research and text on other datasets and aspects of this idea can be
found in papers published on this problem 4,6,2

2 Introduction

Letθ be a list of all the parameters in a neural network. LetL(y, t;θ) be the loss function, where
y is the prediction and t the target. We typically plot the convergence ofL to visualise the differ-
ence between y and t. Our goal here slightly is different. The inputs to this loss function, y and
t, are held constant. In other words, the plot we intend to draw is a function ofθ, i.e.,L(θ; y, t),
or simply L(θ). What this is saying is, for a given domain, what do our choices of the network
architecture, optimiser, loss function, etc., look like on a graph.

1

https://medium.com/@tvsujal/visualising-the-loss-landscape-3a7bfa1c6fdf


Needless to say,θ has a high dimensionality (the simple network in the code snippet in Listing 2
has 1,199,882 dimensions!). And sadly, reality restricts us to only three—at least as far as visual-
isation is concerned. So, we need to reduce this dimensionality. One simple way is to move from
the Euclidian space to a hyperspace of lower dimensions (one or two). In simpler terms,θ with d
dimensions in the Euclidian space canbe thought of as having aone-dimensional representation
in the hyperspace. Theplot ofL(θ; y, t) is then a two-dimensional graph. Likewise, if we assume
θ to be two-dimensional in the hyperspace, we have a desirable 3D plot.

3 Moving to lower-order dimensions

3.1 One dimension by linear interpolation

Plotting the loss as a 1D graph 3 is straightforward: it starts by measuring the loss from one set
of parameters, θ, to another, θ∗, where θ could be a randomly initialised set headed for the
(already-found) local (or even global) optimum,θ∗.

All the possible set of parameters along this line can simply be from 0 to 1, both weighed to add
up to 1, and is given by the non-Euclidian transformation, τ :

τ(α;θ,θ∗) = αθ∗ + (1− α)θ (1)

Withα, a scalar, ranging from0 to 1 on thex-axis and the lossL(τ(α;θ,θ∗)) on they, we have a
one-dimensional loss landscape (Figure 1a). The rangecouldbedifferent and, since the resulting
plot is configuration-dependent, must be discerned accordingly.

3.2 Two-dimensional landscape

Plotting in a two-dimensional space3,4 is just as simple in principle. Given any random or opti-
mised set of parameters, θ∗, we venture in two directions, δ and η. In both directions, we take
small steps,α and β, respectively. The resulting graph is, therefore, a function ofα and β.

Since δ and η are direction vectors, they represent directions in each dimension ofθ∗, i.e., δ and
η have the same dimensionality as θ∗, which could both be sampled from a random Gaussian.

The non-Euclidian transformation is given by τ :

τ(α, β;θ∗) = θ∗ + αδ + βη (2)

A contour plot may then be drawn fromα ∈ [0, 1] andβ ∈ [0, 1], or any range. In Figure 2a, both
are in the range [20, 20].

This graph gives us two pieces of information: the rate at which we can move in the two direc-
tions, and the range touse togeta largerpicture. Thesnippet (Listing7) thatgeneratedFigure2a
(fromthesameθ∗) isused togenerateFigure2b, except this time,αandβ are in [25000, 25000].

4 Utility

Such visualisations are extremely useful when comparing optimisationmethods andnetwork ar-
chitectures. However, this is not always possible, because several kinds of layers do not con-
tribute to any change in the effective result of the model. For example, ReLU does not change
the network’s behaviour if the effective result with and without the layer is the same, such as
when the input to ReLU is scaled by a factor and the output divided by the same factor. Layers
suchasbatch-wisenormalisationalsoact likewise in thenetwork’s invariance tosuch layers. This
prevents us frommaking meaningful comparisons.

2



On the other hand, there are cases when perturbing large weights of a network by some unit
has very little effect. Other times, doing the same on sensitive weights by the same unit can
wreak chaos. To tackle this problem, the randomly generated direction vectors, say, δ, can be
normalised to have the same direction asθ∗. More specifically, each filer in δ is made to have the
same direction as the corresponding layer inθ∗ 6:

δi,j =
δi,j

∥δi,j∥
∥θ∗

i ∥ (3)

Doing this is shown to result in contour plots’ being able to capture the distance scale of loss
surfaces (comparing Figure 2a and Figure 2b, for example) when the directions (δ and η) are nor-
malised in this fashion. 3

4.1 Determining the solution space area

Consider two trainedsetwof parameters,θl andθs. The former is trainedonadatasetwith larger
batches and the latter smaller. Interpolating from one to the other shows the width of possible
solution space depending on batch size.

For instance, consider the contours in Figure 2c generated fromamodel trainedwith a batch size
of 256, as opposed to Figure 2b, which was trained with a batch size of 64.

With the two trained parameters,θl and θs, the following set of parameters is interpolated:

τ(α;θl,θs) = θl + α(θl − θs) (4)

This interpolation is now a function of the parameters based on batch size between 64 and 256.
This comparison helps discover any potential configuration bach-size-wise that yields a better
optimum. And sure enough, we know when to stop (Figure 1).

As a side note, the many hills and valleys explain that when a large batch is used, the resulting
weights tend to be smaller than with smaller batches.3

While this is just an illustration tofindinggoodsolution spacesbasedonbatch size, other param-
etersandhyper-parameterscouldalsobeoptimised. A fewkey takeaways include the following:3

• Wider networks prevent chaotic landscapes
• Skip connexions widen solution space (or minimisers)
• Chaotic landscapes have shallow valleys and result in worse train and test losses
• Visually flatter landscapes correspond to consistently lower test errors

5 Epilogue

• Normalisationof theentire parameter set at once (asopposed to afilter-by-filter basis) has
also been tried out4

• More discussions on the flatness versus sharpness of contours and graphs and their uses
are discussed in detail5,3

• Loss Landscape 7 on GitHub has numerous utility functions and useful classes for further
studies

3

https://github.com/tomgoldstein/loss-landscape


5 References

1 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Languagemodels are few-shot learners. Ad-
vances in neural information processing systems, 33:1877–1901, 2020. 1

2 Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for deep
nets. In International Conference on Machine Learning, pages 1019–1028. PMLR, 2017. 1

3 Ian J Goodfellow, Oriol Vinyals, and AndrewMSaxe. Qualitatively characterizing neural network optimiza-
tion problems. arXiv preprint arXiv:1412.6544, 2014. 2, 3

4 Daniel Jiwoong Im, Michael Tao, and Kristin Branson. An empirical analysis of the optimization of deep
network loss surfaces. arXiv preprint arXiv:1612.04010, 2016. 1, 2, 3

5 Kenji Kawaguchi, Leslie PackKaelbling, andYoshuaBengio. Generalization in deep learning. arXiv preprint
arXiv:1710.05468, 2017. 3

6 Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape of
neural nets. Advances in neural information processing systems, 31, 2018. 1, 3

7 Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape of
neural nets. In Neural Information Processing Systems, 2018. 3

6 Appendix

6.1 Figures

(a) A 1D loss landscape plotted along the linearly in-
terpolated set of parameters with Listing 5

(b) Loss landscape as a function of network parame-
ters varied by batch size

Figure 1. One-dimensional loss landscapes

(a)α, β ∈ [−20, 20] (b) α, β ∈ [−2.5M, 2.5M ];
model training batch size = 64

(c) α, β ∈ [−2.5M, 2.5M ];
model training batch size = 256

Figure 2. Contour plots

4



6.2 Listings

1 from torchvision import transforms as T
2

3 transform = T.Compose([
4 T.ToTensor(),
5 T.Resize((28,28)),
6 T.Normalize((0.1307,), (0.3081,))
7 ])
8 dataset = Dataset(root='data', download=True, train=False, transform=transform)
9 dataloader = torch.utils.data.DataLoader(dataset,
10 batch_size=len(dataset),
11 pin_memory=True, num_workers=4)

Listing 1. A sample PyTorch data loader for the MNIST dataset

1 import torch
2 from torch.nn import functional as F
3

4

5 class Net(torch.nn.Module):
6 def __init__(self):
7 super(Net, self).__init__()
8

9 self.conv1 = torch.nn.Conv2d(1, 32, (3,3))
10 self.conv2 = torch.nn.Conv2d(32, 64, (3,3))
11

12 self.drop1 = torch.nn.Dropout2d(0.25)
13 self.drop2 = torch.nn.Dropout2d(0.5)
14

15 self.fc1 = torch.nn.Linear(9216, 128)
16 self.fc2 = torch.nn.Linear(128, 10)
17

18 def forward(self, x):
19 x = F.relu(self.conv1(x))
20 x = F.relu(self.conv2(x))
21 x = self.drop1(F.max_pool2d(x, 2))
22

23 x = x.flatten(1)
24 x = F.relu(self.fc1(x))
25 x = self.drop2(x)
26 x = self.fc2(x)
27

28 return F.log_softmax(x, 1)

Listing2. AsimpleNNwith twoconvolutional layers enough to classify
the MNIST dataset sufficient for demonstration

1 from torch.nn.utils import (
2 parameters_to_vector as Params2Vec,
3 vector_to_parameters as Vec2Params
4 )
5

6 learnt_model = 'models/learnt.pt'
7

5



8 learnt_net = Net()
9 learnt_net.load_state_dict(torch.load(learnt_model))
10 theta_ast = Params2Vec(learnt_net.parameters())
11

12 infer_net = Net()
13 theta = Params2Vec(infer_net.parameters())
14

15 loss_fn = torch.nn.NLLLoss()

Listing 3. A learnt model (with over 98% accuracy) is loaded.
Interpolation starts from a random initialisation

1 def tau(alpha, theta, theta_ast):
2 return alpha * theta_ast + (1 ‑ alpha) * theta

Listing 4. A function implementing linear interpolation of the
parameters from θ to θ∗

1 losses = []
2

3 for alpha in torch.arange(‑20, 20, 1):
4 for _, (data, label) in enumerate(dataloader):
5 with torch.no_grad():
6 Vec2Params(tau(alpha, theta, theta_ast), infer_net.parameters())
7 infer_net.eval()
8 prediction = infer_net(data)
9 loss = loss_fn(prediction, label).item()
10 losses.append(loss)

Listing 5. Computing the loss of all parameters from the random set
to the globally optimised one

1 def tau_2d(alpha, beta, theta_ast):
2 a = alpha * theta_ast[:,None,None]
3 b = beta * alpha * theta_ast[:,None,None]
4 return a + b

Listing 6. Computing the loss of all parameters from the random set
to the globally optimised one (Code snippet is for illustration. Note
the time complexity; model parallelism should come in handy)

1 x = torch.linspace(‑20, 20, 20)
2 y = torch.linspace(‑20, 20, 20)
3 alpha, beta = torch.meshgrid(x, y)
4 space = tau_2d(alpha, beta, theta_ast)
5

6 losses = torch.empty_like(space[0, :, :])
7

8 for a, _ in enumerate(x):
9 print(f'a = {a}')
10 for b, _ in enumerate(y):
11 Vec2Params(space[:, a, b], infer_net.parameters())
12 for _, (data, label) in enumerate(dataloader):
13 with torch.no_grad():
14 infer_net.eval()

6



15 losses[a][b] = loss_fn(infer_net(data), label).item()

Listing 7. A demo snippet for illustration; used to generate the
contour plot shown below

1 def tau_compare(alpha, theta_l, theta_s):
2 return theta_s + alpha * (theta_l ‑ theta_s)

Listing 8. A demo snippet for illustration; used to generate the
contour plot shown below

7


	Prologue
	Introduction
	Moving to lower-order dimensions
	One dimension by linear interpolation
	Two-dimensional landscape

	Utility
	Determining the solution space area

	Epilogue
	Appendix
	Figures
	Listings


